Quantcast
Channel: Mathelounge - Neue Aktivitäten
Viewing all articles
Browse latest Browse all 267082

Beantwortet: Grenzwert gebrochen rationaler Funktion

$
0
0

Aloha :)

$$\left(\frac{n^2-4n-21}{n^2-3n-28}\right)^n=\left(\frac{n^2-3n-28-n+7}{n^2-3n-28}\right)^n=\left(1-\frac{n-7}{n^2-3n-28}\right)^n$$$$\quad=\left(1-\frac{n-7}{(n-7)(n+4)}\right)^n=\left(1-\frac{1}{n+4}\right)^n=\frac{\left(1-\frac{1}{n+4}\right)^{n+4}}{\left(1-\frac{1}{n+4}\right)^4}\;\;\to\;\;\frac{e^{-1}}{1}=\frac{1}{e}$$

Beachte: \(e^x=\lim\limits_{n\to\infty}\left(1+\frac{x}{n}\right)^n\).


Viewing all articles
Browse latest Browse all 267082


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>